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Evaluation of heat wave forecasts seamlessly across
subseasonal timescales
Trent W. Ford1, Paul A. Dirmeyer 2 and David O. Benson3

We develop an extreme heat validation approach for medium-range forecast models and apply it to the NCEP coupled forecast
model, for which we also attempt to diagnose sources of poor forecast skill. A weighting strategy based on the Poisson function is
developed to provide a seamless transition from short-term day-by-day weather forecasts to expanding time means across
subseasonal timescales. The skill of heat wave forecasts over the conterminous United States is found to be rather insensitive to the
choice of skill metric; however, forecast skill does display spatial patterns that vary depending on whether daily mean, minimum, or
maximum temperatures are the basis of the heat wave metric. The NCEP model fails to persist heat waves as readily as is observed.
This inconsistency worsens with longer forecast lead times. Land–atmosphere feedbacks appear to be a stronger factor for heat
wave maintenance at southern latitudes, but the NCEP model seems to misrepresent those feedbacks, particularly over the
Southwest United States, leading to poor skill in that region. The NCEP model also has unrealistically weak coupling over
agricultural areas of the northern United States, but this does not seem to degrade model skill there. Overall, we find that the
Poisson weighting strategy combined with a variety of deterministic and probabilistic skill metrics provides a versatile framework
for validation of dynamical model heat wave forecasts at subseasonal timescales.
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INTRODUCTION
Heat waves have major implications for human health, particularly
in urban areas where enhanced vulnerability to high temperature
and humidity over the last few decades1,2 is in direct response to
increases in heat wave frequency, intensity, and duration.3–5

Recent changes and projected future increases in heat wave
frequency and intensity in many regions6,7 have been attributed
to increased greenhouse gas concentrations and their effect on
climate, favoring warmer conditions.8,9

Heat waves are usually concurrent with persistent atmospheric
circulation features: high pressure systems that force conditions
favorable for extreme temperatures. Land surface moisture deficits
and land–atmosphere feedbacks have been connected to the
onset and maintenance of heat waves in many regions.10–12

Memory in land surface states provides a potential source of
prediction skill, as the slow manifold of land and ocean are
primary sources of atmospheric predictability on subseasonal
timescales. Positive land–atmosphere feedbacks can exacerbate
and prolong temperature anomalies, providing a form of coupled
memory.13 For forecasting purposes, land surface memory may be
defined by the temporal extent of improved forecast skill when
realistic land surface initiation conditions are used in a model.14–16

Because land surface memory is most relevant at subseasonal
timescales, accurate land surface modeling is important for
subseasonal forecasts. We use the term “subseasonal” to refer to
timescales of less than 90 days, which encompass traditional
short-range (1–5 days), medium-range (5–14 days), and longer (up
to 2 months) forecasts. General circulation model inter-
comparison projects like the Global Land-Atmosphere Coupling

Experiment (GLACE17) are leading to advancements in model
simulation and forecast accuracy. Results from GLACE-218

demonstrated that model fidelity regarding key processes that
communicate initial land surface anomalies to the atmosphere
leads to significantly improved skill from better land surface
initialization. Nevertheless, there remain knowledge gaps,19

particularly concerning the influence of atmospheric and land
surface model parameterizations and forecast initialization on
model forecast reliability.20 Therefore, more work is necessary to
understand and quantify the value of the land surface and soil
moisture memory, particularly for subseasonal forecasts of heat
waves.
Additionally, an important component of model evaluation is

the comparison of model forecast performance across lead times;
this is particularly vital for forecasting heat waves and other events
that manifest on subseasonal timescales. However, many forecast
verification methods are based on a dichotomous outcome (0,1)
or a deterministic value on a single forecast day, and thus do not
consider the observed outcome on days surrounding the forecast
day. This is sensible when applied at short lead times, as a model
forecast should not be considered skillful if a 1-day lead forecast
calls for a heat wave when the actual heat wave begins days later.
However, as we go toward medium-range timescales, such a rigid
deterministic approach makes less sense. If a 10-day lead forecast
shows a heat wave beginning and lasting 3 days while the actual
heat wave begins on day 12 and lasts 4 days, this should be
considered useful and not be penalized for only overlapping on
one day. This hypothetical situation exemplifies the challenge of
applying the same model verification framework over a wide
range of forecast lead times.
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In response to the aforementioned questions and challenges
regarding subseasonal heat wave forecasting, the objectives of
this paper are to (1) design and implement a framework for
seamlessly evaluating heat wave forecasts spanning subseasonal
timescales and (2) diagnose potential sources of forecast fidelity,
specifically focused on the physical coupling between land surface
and atmosphere. The larger objective of our project is to apply the
heat wave validation framework developed here to a suite of
medium-range forecast models.
We defer a full multi-model comparison and present here an

evaluation framework using one model: the National Centers for
Environmental Prediction (NCEP) Climate Forecast System, version
2 (CFSv221). The NCEP model, like any single model, comes with a
set of advantages and limitations. One of its limitations is that it
only has four ensemble members; however, the members are
initialized and forecasts issued daily at 6-h intervals, providing a
continuous stream of forecasts representing every lead time and
validating every day. This is advantageous as compared to models
that may have more ensemble members, but from which forecasts
are only issued every few days. The 11-year period (1999–2010)
over which NCEP forecasts are available is shorter than ideal;
however, given the objectives of this study, particularly the intent
of developing a methodology that will be applied to a suite of
medium-range forecast models, we argue that our focus on the
NCEP model forecasts is justified. Predictions of extreme heat
factor (see Methods) are evaluated with four skill metrics and a
seamless methodology using temperature observations and
reanalyses, the latter useful for further evaluating model
representation of processes involved in heat waves.

RESULTS
Seamless transition across timescales
Model verification is based on four complimentary metrics (see
Methods section): the area under the relative operating character-
istic curve (AUC); reliability; the equitable threat score (ETS), and
the Kullback-Leibler divergence (KLD). We selected these four
model verification metrics because they each evaluate a different
facet of forecast “skill”. AUC is a measure of discrimination,
meaning a high AUC maximizes forecast hits while minimizing
false positives. Reliability and ETS both reward consistency among
ensemble members, while penalizing false positives and false
negatives; however, reliability assess each ensemble member
while ETS assesses the ensemble mean. KLD does not treat the
heat wave forecasts as dichotomous events, but instead accounts

for the forecasted heat wave probability distribution. The metrics,
taken together provide a comprehensive evaluation of model heat
wave forecast skill. The range of forecast lead times examined, in
the case of the NCEP model from 1 to 30 days, complicates model
verification and precludes us from applying the same metrics to
evaluate a single day’s forecast value or dichotomous outcome.
Our solution for seamlessly evaluating model forecasts across a
wide range of lead times is to apply a Poisson weighting strategy
(see Methods section) that accounts for the innate uncertainty
accompanying longer lead-time forecasts. The Poisson distribution
is selected because (1) distribution of weights expands with
increasing forecast lead time, transitioning seamlessly from
deterministic to time-averaged validation (2) its asymmetry allows
for expansion to a range of maximal forecast lead times,
improving the method’s transferability between models, and (3)
it is relatively easy to compute. These features allow the
distribution in time of the weights broaden the event window
as the lead time increases (from blue to red in Fig. 1), thereby
including more surrounding days in the weighting of the
validation state at longer forecast leads. To test the benefit of
the weighting for verifying heat wave (extreme heat factor or EHF)
forecasts, an idealized situation is created where the validation
EHF also acts as the forecast, but shifted by 0–29 days. This
simulates a phase error in an otherwise “perfect” prediction. The
black line with circles in the inset of Fig. S1 represents the
deterministic approach to forecast verification—single-day com-
parisons—where the skill (represented by the normalized KLD
metric) degrades quickly with growing phase error. The normal-
ization is by the skill of the 36-year climatology of EHF from
observations; a value of 1 matches the skill of the climatology
forecast, and skill better than climatology has a score < 1. In
contrast to the deterministic approach, applying the Poisson
window for forecast verification (array of colored lines in Fig. S1
inset) allows for the more intuitive notion that, for instance, a
forecast of a heat wave at a 30-day lead that is shifted by <10 days
is still better than a climatological forecast.
Further analysis using the KLD and ETS metrics reveals that the

decline in model forecast skill from 1- to 30-day lead times is usually
much faster for the deterministic forecasts than when the Poisson
weighting method is used. Therefore, the effect of this weighting
scheme—determined by the difference in skill between determi-
nistic and weighted forecast verification—grows as the forecast lead
time increases. This finding is noteworthy as the weighting scheme
developed here produces similar results to deterministic verification
at short leads while allowing a fair comparison of model forecast skill
between short-range and medium-range lead times.
The Poisson weighting method does introduce one issue with

forecast verification. The calculated forecast climatology and
validation data also must be a weighted function of lead time.
Because the number of days included in the weighting increases
with lead time, the Poisson-weighted probability of a heat wave
occurring in the observations also increases with lead time (Fig. S2,
black line). In order to assuage this issue for model verification, the
(0,1) (no heat wave, heat wave) observation for each day included
in the weighting is multiplied by its respective weight. A heat
wave is then in the validation dataset if the sum of all observation-
weight products exceeds 0.5. This adjustment reduces the
frequency of heat waves in the validation time series (Fig. S2,
red line), and approaches the heat wave frequency of the model.

Forecast skill
Skill evaluation of NCEP subseasonal forecasts using the KLD
metric is shown in Fig. 2, where the basis of skill is the longest lead
time at which model forecasts are more skillful than a
climatological forecast, calculated from 36 years of positive EHF
in the observations. The Poisson weighting method clearly
extends the forecast skill compared to the deterministic

Fig. 1 Poisson weighting framework for seamless transition from
deterministic to probabilistic forecasts from short- to medium-range
timescales. The figure shows the shape of the weights with forecast
leads from 1 to 30 days (blue to red)
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approach—by more than 2 weeks in some parts of Southeast and
South Central United States. The median lead for a forecast more
skillful than climatology is extended by about 3 days in the case of
EHF based on Tmax, 3.5 days for Tmean, and 4 days for Tmin. The
extension of skill into longer lead times when applying the
Poisson weighting scheme is not surprising, given that medium-
range forecasts do not need to be as precise in their timing.
Concentrating on the Poisson-based validation, we see the lead

time of skillful forecasts is slightly higher when Modern-Era
Retrospective Analysis for Research and Applications, version 2
(MERRA-2) reanalysis is used for validation, yet much higher across
the southern United States for Tmin. This feature in the southern
United States is a result of the NCEP model having a larger hit rate
when validated with MERRA-2 than when validated with the
NOAA Climate Prediction Center (CPC) global daily temperature
data. This is most likely attributable to shared bias between the
MERRA-2 reanalysis CFS reanalysis product, the latter of which is
used for initial conditions in the NCEP model. Otherwise, features
between the CPC and MERRA-2 products are similar: the lower
Mississippi Valley is generally a region of long-duration skill, as are
the northern Rockies and Northwest. Such similarity is used to
justify MERRA-2 as a diagnostic dataset for NCEP model behavior,
as described in the Methods section. Regions where the forecast
model struggles include Florida and the Southwest. The skill
minimum over Lake Michigan appears to be because the lake is
not resolved in the NCEP forecast model.
Consistent with the KLD results, skill evaluation using the AUC,

reliability, and ETS metrics shows the highest heat wave forecast
skill in the northern Rockies and Southern Great Plains, but
degrades at lead times beyond ~10–15 days (Figs. 3 and 4). This is
especially true over the western United States, where AUC scores

approach 0.5 (no skill) at lead times beyond 20 days. Spatial
patterns of AUC are similar between Tmax, Tmean, and Tmin forecasts
(Fig. 3). Despite a general west-to-east decreasing gradient of skill
at short lead times, AUC remains above 0.6 throughout much of
the eastern United States even beyond 25-day leads (Fig. 3).
AUC is a measure of model discrimination, and is therefore

dependent on both the frequency of true positive and false
positive heat wave forecasts. The noticeable west-east decreasing
gradient of skill (as determined by the AUC in Fig. 3) at short lead
times is contrasted by a rapid decline in skill in the western half of
the United States at 15- to 25-day lead times. The spread of
positive heat wave forecasts between ensemble members in the
central Midwest and Southeast regions increases as the lead time
increases. This means that at longer lead times (>15 days), fewer
heat wave events are simultaneously predicted by multiple
ensemble members. The result is a larger rate of true positive
forecasts when only one or two ensemble members had to
indicate a heat wave, and a smaller rate of false positive forecasts
when three or more members had to indicate a heat wave (Fig.
S7). However, larger ensemble spread is also accompanied by an
increase in false negative forecasts (misses), although the AUC
metric does not penalize false negative forecasts. Consequently,
the increase in hits and decrease in false positives that
corresponds with larger ensemble member spread results in an
AUC increase, when in reality the overall model skill is reduced.
Therefore, although the Midwest and Southeast show higher
overall “skill” according to the AUC at longer lead times, this is
attributable to disagreement between ensemble members and
should be carefully interpreted.
Model forecast skill assessed via the reliability metric shows

similar results as those based on AUC (Fig. S9): a general west-east

Fig. 2 Lead beyond which skill of NCEP model forecasts of EHF falls below that of a climatological forecast for Tmax (top), Tmean (middle), and
Tmin (bottom) with different validation approaches against observations and MERRA-2 temperature analyses. Widths of colors in the bars at
the bottom of each panel reflect the fractional area in each map; median value in days is given in the corner of each panel
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decreasing gradient of skill appears at shorter lead times.
However, unlike the AUC patterns, this west-east reliability
gradient tends to persist at longer lead times, although with an
overall decrease in reliability (Fig. S9). Under-forecasting of heat
waves in the Midwest that lead to maintenance of relatively high
AUC (Fig. 3) causes a noticeable decline in reliability at a 25-day
lead time (Fig. S9), as reliability accounts for false negatives.
Assessing model forecast skill with ETS results in similar spatial

patterns to the AUC, reliability, and KLD validations. Most skill is
found at smaller lead times in the northwest and inter-mountain
west, with less skill in the southeast (Fig. 4). Unlike AUC and
reliability, ETS values quickly diminish, and forecasts are devoid of
skill with respect to a random forecast (ETS ~ 0), beyond a 25-day
lead over much of the country. ETS is not sensitive to inter-
member spread or disagreement like AUC, partly explaining its
lack of skill in the Midwest at long lead times.

Sources of skill
One advantage of EHF as a heat wave metric is its mandate of the
3-day Tmax, Tmean, or Tmin to exceed an annual climatological
threshold, as opposed to identifying a heat wave during any day
that exceeds a daily climatological threshold. This requirement is
based on research linking multiple-day heat accumulation to
excess mortality and other adverse physiological impacts.21,22

When using EHF to monitor heat wave occurrence, it is critical to
understand both the absolute exceedance of a temperature
threshold and the duration of that anomaly. The multi-day
persistence of high temperature anomalies during extreme heat
events is partly attributed to surface moisture limitations and
land–atmosphere feedbacks.23 We examine the persistence of
extreme heat, in this case the conditional probability (pc) of a heat

wave (EHF > 0) on day n followed by a heat wave on day n+ 1
within the NCEP and observed datasets. Figure 4 shows the NCEP-
observation difference in pc for Tmax, Tmean, and Tmin heat waves at
5-, 15-, and 25-day lead times. The maps show a distinct west-to-
east gradient, such that the conditional probability of a heat wave
persisting is noticeably larger in observations than in the NCEP
forecasts for most of the eastern United States, particularly in
lower Mississippi Valley. These differences grow with lead time, as
pc is nearly 25% lower in the NCEP system than in observations in
the lower Mississippi Valley at 25-day lead times.
The reduced conditional probability of two consecutive heat

wave days in the NCEP forecasts can be explained by day-to-day
changes in Tmax, Tmean, and Tmin subsequent to a heat wave day.
Fig. S8 shows the NCEP and observed temperature changes
between day n and day n+ 1, given that day n is a heat wave day.
The NCEP model exhibits a considerably larger temperature
decrease on days immediately following heat wave days
compared to observations (Fig. S8). Reduced temperature
anomaly persistence in the NCEP model is apparent in the
Southeast United States at 5-day lead times, and expands to
nearly every region of the United States at longer lead times. The
maintenance of high temperature anomalies is necessary in order
to indicate a heat wave when using EHF, and therefore any model-
observation differences in daily temperature persistence will affect
the model’s heat wave forecast skill. The mismatch of hot day
persistence can partly explain the sharp decline in NCEP forecast
skill in the Southeast and central Midwest regions (Fig. 5).
Finally, we attempt to understand the spatial pattern of skill in

the NCEP forecasts. CFSv2 has well-documented biases over crop
vegetation types16,24 that manifest as excessive evaporation, near-
zero sensible heat flux, and very shallow atmospheric boundary

Fig. 3 Panels show areas under the ROC curve (AUC) for heat wave forecasts validated with observations. AUC is shown of Tmax (top), Tmean
(middle), and Tmin (bottom) at 5-day (left), 15-day (middle), and 25-day (right) lead times
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layers. This may be a factor in the excessive model cooling during
heat waves (Fig. S8). Figure 6 shows evidence of this bias:
correlations between surface soil moisture and evaporative
fraction during summer are generally high, indicating soil
moisture’s control on surface fluxes and the potential for
land–atmosphere coupling,25 decreasing from south to north, as
seen in the MERRA-2 reanalysis (Fig. 6, top panels). For NCEP
forecasts, that pattern is interrupted by a region of low correlation
that corresponds to the crop region over the Ohio Valley, upper
Mississippi and Missouri basins, and the lower Mississippi Delta
region.
We use the Π feedback parameter25 to diagnose consistencies

in the regions where soil moisture can potentially exacerbate heat
waves. Overall, spatial patterns of Π are quite consistent between
the NCEP model and MERRA-2 (Fig. 6, middle panels); however,
the overall strength of Π is lower in the forecast model, particularly
in the central Rockies and Southwest. At longer forecast lead times
the heat wave feedback index declines (bottom panels) over
several regions, including the Southwest, suggesting there the
NCEP model would have increasing difficulty maintaining
land–atmosphere feedbacks that would support heat waves. This
is consistent with the rapid drop in skill over the Southwest seen
in Figs. 1 and 2. Meanwhile, the heat wave feedback strengthens
with forecast lead over South Texas and parts of California.

DISCUSSION
Our results suggest that low heat wave forecast skill in some
regions of the United States could be attributable to incon-
sistencies in the coupling between soil moisture and evapo-
transpiration (ET) and the coupling between ET and

temperature. Further investigation is necessary to determine
precisely the contribution of soil moisture–ET–temperature
interactions to model forecast skill. A recent study found many
climate models simulate too strong a linkage between low
evaporation and temperatures, especially over semi-humid
regions.26 However, given widespread long-term drift in
models, it is not clear if such biases manifest on subseasonal
timescales where land and atmosphere initial conditions play a
role. Finally, high humidity during heat waves plays an added
role in human health and mortality,27 but is not accounted for
in this study. The framework developed here would be
applicable for validating model forecasts of humid heat waves
if applied to apparent temperature or equivalent temperature.
The application of our framework for diagnosing model forecast
fidelity for oppressive heat waves (i.e., hot and humid) is
separate from the objectives of this particular study, but will be
the focus of future research.
The results presented here demonstrate the advantages of

implementing the Poisson weighting strategy for seamless model
forecast validation across a range of lead times. This provides a
framework for fair and consistent validation of model heat wave
forecasts along the spectrum of short- to medium-range time-
scales, thereby affording a more comprehensive evaluation of
model skill. An additional advantage of this method is its
applicability to a wide range of skill metrics, as evidenced here
with the combination of KLD, AUC, reliability, and ETS. This study
demonstrates a robust framework for validating dynamic model
heat wave forecasts across a range of timescales, and we will
apply this framework for future multi-model validation and
comparison.

Fig. 4 Panels show areas under the equitable threat score (ETS) for heat wave forecasts validated with observations. ETS is shown of Tmax
(top), Tmean (middle), and Tmin (bottom) at 5-day (left), 15-day (middle), and 25-day (right) lead times
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METHODS
Validation data
Model heat wave verification is based on 2-m maximum, mean, and
minimum temperature from several sources. The CPC global daily
temperature analysis at 0.5° resolution28 for the period 1980–2015 is used
as the observational validation source; reanalysis data are also used as they
contain gridded fields in addition to temperature that can be compared to
forecast model output in order to diagnose model behavior. The MERRA-
229 is the primary atmospheric and land surface reanalysis product used to
validate terrestrial and atmospheric segments of soil
moisture–temperature coupling in subseasonal model forecasts. MERRA-
2 fields are available at a 0.5° × 0.625° spatial resolution as daily data from
1980 to the present. The MERRA-2 system assimilates observations from
atmospheric in situ and remote sensing sources; however, it does not
assimilate 2-m temperature. One of many MERRA-2 updates over the
original MERRA product is hourly precipitation correction guided by the
National Oceanographic and Atmospheric Administration (NOAA) Climate
Prediction Center’s unified gauge-based analysis of global daily precipita-
tion. This correction occurs within the atmosphere–land reanalysis system,
thus also influences land surface states.30 This results in improved
correspondence between MERRA-2 and observations of soil moisture.31

Soil moisture, sensible and latent heat flux, and 2-m temperature are used
from MERRA-2.

Forecast model
The NCEP CFSv2 system includes an atmospheric model with 64
atmospheric sigma-pressure layers and a T126 horizontal resolution
coupled with the NOAA GFDL Modular Ocean Model, version 4, including
a sea ice model32 and the four-layer Noah land surface model.33 Model
initial conditions are from the Climate Forecast System Reanalysis (CFSR),
and one forecast is initialized every 6 h to produce a daily four-member
ensemble. The land surface conditions are initialized from CFSR, which

employs a parallel uncoupled Noah simulation to reset the CFSR land
states every 24 h. Land states include realistic soil moisture (liquid+ ice) for
four layers down to 2-m below the surface. Vegetation is represented by a
monthly climatology of green vegetation fraction, and soil properties are
defined following.34 Daily NCEP re-forecasts acquired from the
Subseasonal-to-Seasonal (S2S) project database35 for 1999 through 2010
are provided at 1.5° horizontal resolution. Daily model re-forecast data are
examined at lead times ranging from 1 to 30 days.

Heat wave metrics
Extreme heat is identified using the EHF,36 which has been widely used to
identify heat waves and measure their intensity.12,37 EHF quantifies heat
wave intensity through two separate metrics, the significance excess heat
index (EHIsig) and the acclimatization excess heat index (EHIaccl), defined as:

EHIsig ¼ Ti�2 þ Ti�1 þ Ti
3

� T90 (1)

EHIaccl ¼ Ti�2 þ Ti�1 þ Ti
3

� Ti�32 þ Ti�31 þ � � � þ Ti�3

30
; (2)

where Ti is daily 2-m maximum temperature (Tmax), minimum temperature
(Tmin), or mean temperature (Tmean), and T90 is the climatological 90th
percentile value of that particular metric. The indices are calculated over a
sliding 3-day window over the duration of the study period and are set to
zero if negative. The EHIsig is a threshold index representing heat wave
intensity with respect to T90, while EHIaccl represents heat wave intensity
with respect to human acclimatization based on conditions during the
previous 30 days. The EHF is the product of the two indices:

EHF ¼ max 1; EHIaccl½ � ´ EHIsig; (3)

A heat wave is identified on day i if that day has a positive EHF value,
thereby representing exceedance of T90 over a 3-day period, ending on
day i. In order to fairly compare EHF between observations and the model,

Fig. 5 Panels show NCEP-observed differences in the conditional probability of a heat wave on day n+ 1 given a heat wave on day n.
Differences are shown as % probability, and separated by Tmax, Tmean, and Tmin at 5-, 15-, and 25-day NCEP forecast lead time
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daily observed Tmax, Tmin, and Tmean are aggregated to match the lower
NCEP model resolution. Daily EHF is calculated from Tmax, Tmin, and Tmean

within the observations and each of the four model ensemble members,
separately. Daily EHF is also calculated from the four-member model
ensemble mean Tmax, Tmin, and Tmean. This makes for a more equitable
comparison, as the T90 threshold is relative to each individual realization.

Poisson weighting of forecasts
A series of weights in time are applied to the daily forecasts and
observations (Fig. S1). Poisson function weights Wλ,k are defined for
validation of a forecast of a heat wave variable X as:

Fλ ¼
PN

k¼1 Wλ;kXkPN
k¼1 Wλ;k

; Wλ;k ¼ λke�λ

k!
(4)

Where F is the time-weighted average forecast at lead λ composed from
daily forecasts of X at leads k= 1, N. The Poisson function W also has a
weight at k= 0, which corresponds to including the analysis of variable X
as part of the weighted forecast. That is a valid approach in practice,
analogous to incorporating an element of persistence, but it does not help
us evaluate the forecast model behavior, so we leave that term out and
renormalize F by the sum of the remaining weights. In fact, renormalization
is only necessary for leads λ ≤ 7; at longer leads the k= 0 weight becomes
negligible. For λ ≤ 30, N≅ 45 is an adequate limit, meaning at least 45-day
model forecast output is needed to apply this approach for up to 30-day
forecasts.

Forecast evaluations
Operational forecast skill is often evaluated using skill scores, which are
relatively easy to compute and interpret. Certain skill scores are best
implemented for probability forecasts of dichotomous events, such as heat
wave/no heat wave, while others are better suited for verification of a
deterministic prediction of heat wave/no heat wave.38 To best evaluate
model re-forecasts, both probabilistic and deterministic skill scores are
employed, namely the AUC, reliability, and the ETS.
Calculation of both the AUC and ETS relies on contingency tables

(supplementary Table S1), populated with hits (α), false positives (b), misses
(c), and true negatives (d) from all samples. A contingency table is
computed separately for each ensemble member in the AUC calculation.
The hit rate (HR) and false alarm rate (FAR) for member i are computed as:

HRi ¼ ai
ai þ ci

(5)

and

FARi ¼ bi
bi þ di

(6)

A model with no skill will have an ROC curve that lies along the HR ¼
FAR diagonal line, and therefore any positive area (AUC) between this
diagonal and the actual ROC curve indicates forecast skill. Fig. S3 shows the
ROC curve from the 15-day Tmax forecast over Atlanta, Georgia; AUC is the
integrated area between the model skill line and the “no skill” line. We
adapt the AUC to verify deterministic (heat wave/no heat wave) forecasts
from the NCEP model by establishing thresholds of the percent of model
ensemble members that forecast a heat wave on a particular day at a
particular lead time. We calculate HR and FAR when 1, 2, 3, and 4 out of 4
ensemble members forecast a heat wave, providing four (FAR, HR) points,

Fig. 6 Correlation of daily near-surface soil moisture (SM) with evaporative fraction (EF) in MERRA-2 and the NCEP forecast model (top row);
Miralles et al. heat wave index Π (middle row) and the change in Π in the NCEP forecast model between 10- and 2-day forecast lead (bottom
left) and between 28- and 2-day forecast lead (bottom right)
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to which we add a 0 and 1 to the ends. The AUC is then calculated as the
integrated area between the model FAR:HR curve and the diagonal 1-to-1
line.
Model forecast reliability is assessed via the reliability diagram, which

summarizes the forecast probabilities of dichotomous outcome E with the
observed frequency of the occurrence of E.39 In our case, we calculate the
observed frequency of heat waves when 0, 1, 2, 3, and all 4 NCEP ensemble
members forecast a heat wave, providing 5 points along which we can
evaluate model reliability. Fig. S4 displays a reliability diagram for NCEP
heat wave forecasts at a 10-day lead over Salt Lake City, Utah. The blue line
shows the perfect forecast, when the forecasted probability and observed
frequency have a 1-to-1 correspondence. We identify model forecast
reliability as the integrated area between the “perfect forecast” line and the
actual forecast line, shown as the thick, black line (Fig. S4). Therefore,
model reliability improves as the area approaches 0; positive (negative)
areas represent over- (under-) forecasting of heat waves.
The ETS, a deterministic prediction skill score, is used to evaluate the

ensemble mean heat wave forecast. The ETS is calculated as:

ETS ¼ a� ar
aþ bþ c � ar

; (7)

where ar is the expected fraction of hits for a random forecast:

ar ¼ aþ cð Þ aþ bð Þ
aþ bþ c þ d

; (8)

We also employ KLD, also known as information divergence or relative
entropy, which measures the difference between two probability
distributions.40 Here we apply it in the time dimension to determine
how well model simulations of EHF agree with observations at each
location, and how well the observation and reanalysis datasets agree with
each other (Fig. S5). For two probability distributions p and q:

Kp;q ¼
X

t

p tð Þln p tð Þ
q tð Þ (9)

provided the areas under the time series are normalized so that
X

t
pðtÞ ¼

X
t
qðtÞ ¼ 1 (10)

and p and q are non-zero over the same domain. To fulfill this last
requirement, values of the excessive heat metrics during the time domain
of the heat wave season are set to 10−4 when there is no heat wave. Kp,q ≥
0 and Kp,q= 0 only if the distributions of p and q are identical. Kp,q ≠ Kq,p
but ranking is preserved, as KLD is invariant to linear and nonlinear
transformations. In our validations, p represents EHF from observations and
q is EHF from the model forecast at any particular lead time. The duration
of the heat wave season across CONUS (Fig. S6) is estimated as the
difference in days between the earliest and latest date of occurrence in any
year of a positive EHF value in Tmean across the 36 observation years.

Data availability
Model re-forecast datasets are available via the ECMWF S2S repository
(http://apps.ecmwf.int/datasets/data/s2s-reforecasts-daily-averaged-ecmf/
levtype=sfc/type=cf/). Validation datasets, CPC and MERRA-2, are available
via the NOAA ESRL climate data repository (https://www.esrl.noaa.gov/psd/
data/gridded/data.cpc.globaltemp.html) and NASA GES DISC repository
(https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2),
respectively.
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